測量法義
關燈
小
中
大
于依壬甲乙景線之甲乙丙丁直角方形上若作一甲丙對角線其權線必過丙必在丁丙之内而分丁丙邉于癸是日在四十五度之下其權線必在丁丙邉之内也故矩度之内其傍通光耳之分度邊為直景而對通光耳之分度邊為倒景
本題十五首
第一題
日輪髙四十五度直景倒景皆與表等在四十五度以上則直景小于表而倒景大于表在四十五度以下則直景大于表而倒景小于表
依矩度即可明此題之義葢上已論日輪在四十五度權線必在丙即顯乙丙直景丁丙倒景皆與甲乙甲丁兩表等何者直角方形之各邊俱等故也若日在四十五度以上權線必在乙丙分度邊上而倒景當在丁丙之引出邊上是直景小于倒景而倒景大于甲丁表若日在四十五度以下權線必在丁丙分
度邊上而直景當在乙丙之引出邉上是倒景小于直景而直景大于甲乙表
第二題
表随日所至皆為直景與倒景連比例之中率
先設日輪在四十五度而權線在丙題言甲乙或甲丁表皆為乙丙直景與丁
丙倒景連比例之中率
論曰甲乙丙丁直角方形之四邊既等即乙丙直景與甲乙或甲丁表之比例若表與丁丙倒景何者三線等即為兩相同之比例故
次設日輪在四十五度以上權線
在乙丙直景邊内分乙丙于戊而
倒景在丁丙之引出邊上遇權線于已題言甲乙或甲丁表為乙戊直景與丁巳倒景連比例之中率論曰乙與丁兩直角等而乙甲戊與已相對之兩内角亦等【一卷廿八】即甲乙戊巳丁甲為等角形【六卷四】則乙戊直景與甲乙或甲丁表之比例若表與丁巳倒景是甲乙或甲丁表為兩景之中率【六卷八之系】
後設日輪在四十五度以下權線
在丁丙倒景邊内分丁丙于戊而
直景在乙丙之引出邊上與權線遇于已題言甲乙或甲丁表為丁戊倒景與乙巳直景連比例之中率論曰丁與乙兩直角等而丁甲戊與巳甲戊丁與乙甲巳各相對之兩内角各等【一卷廿八】即甲丁戊甲乙巳為等角形【六卷四】則丁戊倒景與甲乙或甲丁表之比例若表與乙巳直景是甲乙或甲丁表為兩景之中率【六卷八之系】
注曰直景表倒景三線既為連比例即直景倒景兩線矩内直角形與表上直角方形等【六卷十七】故表度十二則其羃為一百四十四若以為實以所設景數為法除之即得所求景數假如權線所至在倒景之三度即以三為法除其實一百四十四得四十八度為直景又如權線所至在所設景之五度三分度之二即所求景為二十五度十七分度之七何者以五度三分度之二為法除其實一百四十四即得二十五度十七分度之七是二景互變相代法【畸分除法見後附】
第三題
物之髙立于地平以直角其景與物之比例若直景與表亦若表與倒景
解曰物之髙以直角立于地平如巳庚其景在地平上為庚辛題言直景與表之比例若庚辛與巳庚又言表與倒景之比例若庚辛與巳庚【凡言地平者皆依直線取平若不平者煩先準平然後測量後仿此】
先論權線在丙者曰權線恒與物之髙為平行線何者兩線下至庚辛皆為直角故【一卷廿八】即辛甲丙角與巳角等【一卷廿九】而乙與
庚兩直角又等則甲乙丙巳庚辛為等角形【一卷廿二】是乙丙直景與甲乙表之比例若庚辛景與巳庚髙【六卷四】
二論曰若權線在乙丙直景邊内而分乙丙于戊依前論顯乙甲戊角與巳角等【一卷廿九】乙角與庚角等則甲乙戊巳庚辛為等角形【一卷三十二】是乙戊直景與甲乙表之比例若庚辛景與巳庚髙【六卷四】
三論第一圖之倒景曰權線在丙其巳角丁丙甲角各與乙甲丙角等【一卷廿九】即自相等丁角與庚角又等則甲丁丙與巳庚辛亦等角形【一卷三十二】是甲丁表與丁丙倒景之比例若庚辛景與巳庚髙【六卷四】
後論曰若權線在丁丙倒景邊内而分丁丙于戊依前論顯乙甲戊角與巳角等【一卷廿九】即丁戊甲角與巳角亦等【一卷廿八】丁角與庚角又等則丁戊甲巳庚辛為等角形【一卷三十二】是甲丁表與丁戊倒景之比例若庚辛景與巳庚髙【六卷四】注曰前既論【本篇第一題】日輪在四十五度直景倒景皆與表等在四十五度以上直景小于表在四十五度以下表大于倒景即顯日輪在四十五度各物在地平之景與其物之髙等在四十五度以上即景小于
物在四十五度以下即景大于物如上三圖可見第四題
冇物之景測物之髙
法曰如前圖以矩度向日甲耳在前取日光透耳兩竅以權線與矩度平直相切任其垂下細審所值何度何分若在十二度之中對角線上則景與物必正相等【本篇三題注】故量其景長即得其物髙若權線在直景邊即景小于物【本篇三題注】則直景與表之比例若物之景與其髙用三數法以直景上所值度分為第一數以全表度十二為第二數以物景之度為第三數算之即所得數為其物髙【三數算法見後附】
注曰欲測巳庚之髙以矩度承日審權